Suppression of tumor growth by senescence in virally transformed human fibroblasts.

نویسندگان

  • W O'Brien
  • G Stenman
  • R Sager
چکیده

Normal human cells whether embryonic, neonatal, or adult are resistant to experimentally induced tumorigenesis in contrast to rodent or chicken cells. We showed previously that neither transformation with simian virus 40 DNA nor transfection with human mutant HRAS DNA immortalized FS-2 cells (diploid, neonatal human fibroblasts). Further, tumorigenicity was not induced, despite expression of the respective transforming gene products tumor (T) antigen or p21. Here we describe treatment of FS-2 and FSSV cells with baboon endogenous virus pseudotyped Kirsten murine sarcoma virus. FSSV cells were derived from individual foci of simian virus 40-transformed FS-2 cells. The retrovirus-treated FS-2 cells (called FSK) appeared heavily granulated and expressed viral p21 but senesced during passage in culture and were not tumorigenic. The retrovirus-treated FSSV-27 cells (called FSVK-27) expressed simian virus 40 tumor antigen, had elevated levels of viral p21 protein, and formed transient tumors in nude mice. Whether grown in culture or explanted from small tumors, the FSVK-27 cells senesced. The FSVK-46 cells senesced before tumor growth occurred. On the contrary, Kirsten murine sarcoma virus (baboon endogenous virus) treatment of immortalized nontumorigenic human fibroblasts expressing simian virus 40 tumor antigen (Va2 cells) led to consistent tumor formation. The results illustrate the importance of senescence in restricting the tumor-forming ability of human cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-22 represses cancer progression by inducing cellular senescence

Cellular senescence acts as a barrier to cancer progression, and microRNAs (miRNAs) are thought to be potential senescence regulators. However, whether senescence-associated miRNAs (SA-miRNAs) contribute to tumor suppression remains unknown. Here, we report that miR-22, a novel SA-miRNA, has an impact on tumorigenesis. miR-22 is up-regulated in human senescent fibroblasts and epithelial cells b...

متن کامل

p53-related apoptosis resistance and tumor suppression activity in UVB-induced premature senescent human skin fibroblasts.

Chronic exposure to solar UV irradiation leads to photoaging, immunosuppression, and ultimately carcinogenesis. Cellular senescence is thought to play an important role in tumor suppression and apoptosis resistance. However, the relationships among stress-induced premature senescence (SIPS), tumorigenesis and apoptosis induced by UVB remain unknown. We developed a model of UVB-induced premature...

متن کامل

Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a).

Cellular senescence, an irreversible proliferation arrest evoked by stresses such as oncogene activation, telomere dysfunction, or diverse genotoxic insults, has been implicated in tumor suppression and aging. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), nuclear DNA domains stained densely by...

متن کامل

Senescence as a mode of tumor suppression.

Two independent lines of experimental evidence are presented in support of the hypothesis that senescence is a normal mechanism of tumor suppression, a homeostatic device designed through evolution to limit cell proliferation irreversibly and thereby to protect the organism against cancer. One set of experiments uses normal human foreskin fibroblasts, transfected at early passage with SV40 DNA ...

متن کامل

Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect

Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 22  شماره 

صفحات  -

تاریخ انتشار 1986